Skip to main content

C++ property and detection of property change event

In C++, property means a private field with a getter and a setter method. Unlike C# and other languages, it is part of the language where it is set or accessed just like a field. In C++ never had the notion of the way C# address gets or set of property field(s).

However, in MSVC, Clang a property extension has been added to give a notion of get / set of property. How it looks like? Let's have a small code: 

#include <iostream>
#include <string>

using std::cout;
using std::string;

class Animal
{
    string sName_;

public:
    string getName() const { return sName_; }
    void setName(const string &asName)
    {
        sName_ = asName;
    }

public:
    __declspec(property(get = getName, put = setName)) string sName;
};

int main()
{
    Animal aObj;
    // Set animal name
    aObj.sName = "Cat";
    cout << "The animal is: " << aObj.sName << "\n";
}

The __declspec extension uses the get and set methods, and these two methods have to be public.

One can argue the usage of properties can also be done through getter and setter methods. Then why to use __declspec properties. This can help us to detect an event on property change. This is nicely shown by  Dmitri Nesteruk in his youtube video. However, the following code snippet is showing same along with some modifications (Compiles in MSVC 2022): 

#include <iostream>
#include <string>

#include <boost/signals2/signal.hpp>

using std::cout;
using std::string;
using boost::signals2::signal;

template<typename T>
class INotifyPropertyChange
{
public:
    signal<void(T*, string, string)> PropertyChanged;
};

class Animal : public INotifyPropertyChange<Animal>
{
    string sName_;

public:
    string getName() const { return sName_; }
    void setName(const string &asName) 
    {
        if (asName == sName_) return;
        if (sName_.empty())
        {
            sName_ = asName;
            return;
        }
        string localName = sName_;
        sName_ = asName;
        PropertyChanged(this, localName, asName);
    }

public:
    __declspec(property(get = getName, put = setName)) string sName;
};

int main()
{
    Animal aObj;
    boost::signals2::connection aConnObj = aObj.PropertyChanged.connect([](Animal* pAnimal, string aOldName, string aNewName)
        {
            cout << "Animal name has changed from: " << aOldName << " to " << aNewName << "!\n";
        });
    aObj.sName = "Cat";
    aObj.sName = "Dog";
    aObj.sName = "Horse";
    aConnObj.disconnect(); // Once disconnected no more notification 
                                           //  gets generated for property change

    aObj.sName = "Squirrel";
}

Output: 



Comments

Popular posts from this blog

Reversing char array without splitting the array to tokens

 I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

Close a Window Application from another application.

 This is just a demo application code to show how the WM_CLOSE message can be sent to the target process which has a titled window to close the application. To achieve this, either we can use SendMessage or PostMessage APIs to send required Windows messages to the target application. Though both the APIs are dispatching WM_XXXXX message to target application two APIs has some differences, these are as below: 1. SendMessage () call is a blocking call but PostMessage is a non-blocking call(Asynchronous) 2. SendMessage() APIs return type is LRESULT (LONG_PTR) but PostMessage() APIs return type is BOOL(typedef int). In Short, SendMessage () APIs return type depends on what message has been sent to the Windowed target process. For the other one, it's always a non-zero value, which indicates the message has been successfully placed on the target process message queue. Now let's see how can I close a target windowed application "Solitaire & Casual Games" from my custom-