## Posts

Showing posts from 2023

### Power of Two

I n this post will be discussing how to calculate if a number is a power of two or not. As an example, 8 is a power of two but the number 10 is not. There are many ways we can solve this. First , we will take an approach which is simple and iterative. In this case, we will calculate the power of two one by one and check with the supplied number. The below code illustrates it. bool isPowerofTwo(unsigned num) { auto y = 1; while (0 != y) { if (num == y) return true; if (num < y) return false; y <<= 1; } return false; } Second , assuming, the number is a 32-bit number, this is also an iterative solution. In this scenario, iterating all bits and counting the set bits. Any number which is a power of 2 will have only one bit set and the rest will be zeros. As an example, 8 in binary representation is 1000. Using this observation, we can implement an iterative solution. bool isPowerofTwo(unsigned num) { auto one_count = 0; for (auto index = 0; index < 32;

### Reversing char array without splitting the array to tokens

I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

### strcpy / strcmp implementation

In C/C++ we have a library function called strcpy to copy the source character array to the destination character array. The C++ function details have been documented here . Today I tried to implement it in my own way. I have put forth a few conditions to implement this function, which are described below. 1. I don't want to pass the size of arrays as function parameters. I mean, the parameter gets passed implicitly 2. I don't want the program shall compile if any of the array sizes or both array sizes are zero or one. 3. There shall be no operation if source and destination arrays are the same. 4. No overflow happens if the destination array size is smaller than the source. 5. The destination array must be null-terminated after a successful copy. Below is the client code to test the implementation: int main() { // Case 1: Source and destination arrays are of the same size char src[] = "Hello World"; char dest[12] = {}; // n - 1 chars will be copied and the las

### Accessing private data member of a class without friend

R ecently dug into the object layout and observed a loophole in C++. We know in C++ we have something called reinterpret_cast. If I need to hack the access specifier of a class not defined by us may try to use reinterpret_cast to hack it, though it is illegal but it works.  Let's see the code:  I have a class defined in a file called Demo.hpp. The class definition looks like below: class Demo { private:     int x;     char ch; public:     void print()     {         std::cout << "The value of x is: " << x << "\n";     } }; Now I have created a class of similar structure but not exactly the same but somewhat similar to the Demo class.  class hack { public:     int a; }; int main() {     Demo d;     // Through reinterpret_cast     (reinterpret_cast<hack&>(d)).a = 20;     d.print(); } To my surprise, I am able to set the value 20 to the private variable x of the class Demo. Looks like the compiler is trying to align the object model in th

### XOR (Exclusive OR) for branchless coding

The following example shows the array reversing using the  XOR operator . No need to take any additional variable to reverse the array.   int main(int argc, _TCHAR* argv[]) { char str[] = "I AM STUDENT"; int length = strlen(str); for(int i = 0; i < ((length/2)); i++) { str[i] ^= str[length - (1+i)]; str[length - (1+i)] ^= str[i]; str[i] ^= str[length - (1+i)]; } cout << str << endl; return 0; } The above example is one of the uses of XOR but XOR comes in handy when we can do branchless coding  methods like butterfly switch etc. Sometimes this is very effective in speeding up the execution.  Let's see one of the uses of XOR in branchless coding. I am taking a simple example of Y = | X |.  Yes, I am generating abs of a supplied number. So, my function signature/definition in C++ looks like below: int absoluteBranch( int x) {     if (x < 0 ) {         return -x;     }     else {         retur

### Recover from exception and re-execute the code.

In this post, I am trying to show how can we catch an exception, then correct the cause of the exception and re-execute the code. In Windows, we have something called SEH (Structured Exception Handling) using which we can have a chance to recover from exceptions and re-execute the code which originally raised an exception. So what I am trying to do here in my sample code is: 1. Accepting two numbers from the user and deliberately taking the denominator as 0; 2. Trying to divide by numerator with zero. 3. Division with zero results as an exception. 4. Catching the exception and asking the user to re-enter the denominator with a non-zero value and then executing the division part of the code again.  Simple! This same thing can be done for other type of exceptions too. Let's see how it works in the below demo code! #include <windows.h> #include <iostream> class ADemoToRecover { public:         int numerator = 0;         int denominator = 0; public:     int recoverFromDivi

### Close a Window Application from another application.

This is just a demo application code to show how the WM_CLOSE message can be sent to the target process which has a titled window to close the application. To achieve this, either we can use SendMessage or PostMessage APIs to send required Windows messages to the target application. Though both the APIs are dispatching WM_XXXXX message to target application two APIs has some differences, these are as below: 1. SendMessage () call is a blocking call but PostMessage is a non-blocking call(Asynchronous) 2. SendMessage() APIs return type is LRESULT (LONG_PTR) but PostMessage() APIs return type is BOOL(typedef int). In Short, SendMessage () APIs return type depends on what message has been sent to the Windowed target process. For the other one, it's always a non-zero value, which indicates the message has been successfully placed on the target process message queue. Now let's see how can I close a target windowed application "Solitaire & Casual Games" from my custom-

### An attempt to Implement Binary Search STL (associative) Containers agnostic way.

Binary Search is a very trivial algorithm to search a target value from a sorted array. It's popular among students of computer science and also during interviews it gets asked by the interviewer. It's easy. We take an array of integers already sorted and apply binary search on that array to figure out if the target value does present in that sorted array or not.  The condition can be either present or not present. If it is present we return the array index of the element else we return -1. The algorithm is very simple, it's broken down into three parts. 1. Find and compare the middle element of the search space with the key. 2. If the key is found in the middle, just return the array index. 3. If the key is not found then choose half of the array space, based on whether the key value is smaller or greater than the mid element.       a. If the key element is smaller than the mid element, then the left side of the search space will be used otherwise, the right side of the s

### A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

### An Attempt to run Odd-Even Sorting in multi-threading

This is an attempt to run odd-even sorting from two threads without using locks. I have used a vector and split the vector logically in two halves if the size is beyond a value (Here as an example kept size 10, that means if the vector size is more than 10, then two threads will spawn and parallelize (on multi-core) sorting on the elements of the vector container. Finally, after sorting each half by two threads, another sorting will be arranged to make it finally sorted.  The Wiki contains the details about Odd-Even sorting. It's a comparison sorting. The below code snippet is a simple approach to odd-even sorting with multi-threading without having locks. No Extra space was allocated/used in this scenario.  void partBySort(std::vector<int>* vec, size_t begIndex, size_t endIndex) {     if (begIndex == endIndex) return;     bool isSorted = false;     while (!isSorted)     {         isSorted = true;         for (size_t i = begIndex; i <= endIndex - 1; i += 2)         {

### The Simplest sorting algorithm

The simplest sorting algorithm is not bubble sort or insertion sort but known as stupid sort aka gnome sort . The time complexity is like a bubble sort. However, the code base size is much smaller. Possibly it offers the smallest code base size in the domain of the sorting algorithm. The details can be found on Wikipedia . Here goes the code: void gnomeSort(std::vector<int>& data) {     int pos = 0;     while (pos < data.size())     {         if (pos == 0 or data[pos] >= data[pos - 1])             pos += 1;         else          {             std::swap(data[pos], data[pos - 1]);             pos -= 1;         }     } } int main() {        std::vector<int> v4 = { 10, 0, 2, 33, 5, 77, 8, 19, 1, 7 };       gnomeSort(v4);       for (auto i: v4)          std::cout << i << " "; } Happy sorting...