Skip to main content

strcpy / strcmp implementation

 In C/C++ we have a library function called strcpy to copy the source character array to the destination character array. The C++ function details have been documented here. Today I tried to implement it in my own way. I have put forth a few conditions to implement this function, which are described below.

1. I don't want to pass the size of arrays as function parameters. I mean, the parameter gets passed implicitly
2. I don't want the program shall compile if any of the array sizes or both array sizes are zero or one.
3. There shall be no operation if source and destination arrays are the same.
4. No overflow happens if the destination array size is smaller than the source.
5. The destination array must be null-terminated after a successful copy.


Below is the client code to test the implementation:
int main()
{
// Case 1: Source and destination arrays are of the same size
char src[] = "Hello World";
char dest[12] = {}; // n - 1 chars will be copied and the last one will be '\0'

_strcpy(dest, src);
std::cout << "After the copy: " << dest << "\n";

for (int i = 0; i < 12; ++i) {
if (dest[i] == '\0') {
std::cout << "Null termination present..." << "\n";
}
}

// Case 2: Source and destination arrays are of different sizes, destination array size is smaller
char dest_1[6] = {};
_strcpy(dest_1, src);
std::cout << "After the copy: " << dest_1 << "\n";

for (int i = 0; i < 6; ++i) {
if (dest_1[i] == '\0') {
std::cout << "Null termination present..." << "\n";
}
}

// Case 3: source and destination arrays are of different sizes, 
// destination array size is the smallest permissible size...
char dest_2[2] = {};
_strcpy(dest_2, src);
std::cout << "After the copy: " << dest_2 << "\n";

for (int i = 0; i < 2; ++i) {
if (dest_1[i] == '\0') {
std::cout << "Null termination present..." << "\n";
}
}

// Case 4: Src to Src copy, results in no operation just return;
_strcpy(src, src);

// Case 5: The destination array size is bigger than the source array size
char dest_10[100] = {};
_strcpy(dest_10, src);
std::cout << "After the copy: " << dest_10 << "\n";

for (int i = 0; i < 100; ++i) {
if (dest_1[i] == '\0') {
std::cout << "Null termination present..." << "\n";
break;
}
}

// Case 6: Logical error case, source and destination interchanged while calling the API
char dest_11[12] = {};
_strcpy(src, dest_11);
        // Destination to source copy hence src is a null-terminated empty array
std::cout << "After the copy: " << src << "\n"; 
for (int i = 0; i < 12; ++i) {
if (dest_1[i] == '\0') {
std::cout << "Null termination present..." << "\n";
break;
}
}

// Error cases, the program will not compile for the following cases...
/*char dest_3[0] = {};
_strcpy(dest_3, src);

char dest_4[1] = {};
_strcpy(dest_4, src);*/

return 0;
}

A similar way implemented strcmp as below:




Comments

Popular posts from this blog

Reversing char array without splitting the array to tokens

 I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

Variadic template class to add numbers recursively during compilation

 The idea of having a class to add numbers (variable parameters) during compilation time recursively. Also wanted to restrict types to a single type while sending parameters to class member function. That said, if we mix int, float and double types to add function shall result in compilation error. How do we achieve this. The below is the code which actually helps to achieve this: <code> #include < fmt/format.h > template < typename T> class MyVarSumClass{     private :         T _sum = 0 ;     public :         template < typename ... TRest>         T add(T num, TRest... nums){             static_assert (std::conjunction<std::is_same<TRest, T>...>{}); /* Assert fails                if types are different */             _sum += num;             return add(nums...); // Next parameter packs gets picked recursively         }         // Base case         T add(T num){             _sum += num;             return _sum;         } }; int main() {     My