Skip to main content

The Visitor pattern

What is visitor pattern?

1.    It encapsulates an operation executed on an object hierarchy in an object. That says, it allows to add   methods to classes of different types without much altering to those classes.

2.       Enables to define new operations without changing the object hierarchy.

Use-Case:

a. Operations shall be performed on object hierarchy

b. The operations change frequently but object hierarchy is stable.

Basic UML Class Diagram: 

      







Visitor:

· Defines the visit operation on the object structure

    Tax Visitor:

· Implements the visit operation for each type of object

    Visitable:

· Defines the accept operation which takes visitor as an argument

    Visitable Element(s):

               · Implements accept operations

     



The Visitor pattern has two types of hierarchies. The object hierarchy (Visitable elements) and the operation hierarchy (TaxVisitor). The object hierarchy is pretty stable, but operation hierarchy may support different operations on same object hierarchy. In our case Visitor and Visitable acts as interfaces. What does it mean? It means Liquor, Tobacco and Necessity must implement accept member function. Similarly, TaxVisitor must implement overloads of visit function for each object type.

Operation wise, TaxVisitor is applied to object hierarchy. The job of TaxVisitor is to calculate tax based on object type visited. The crucial observation here is an object e.g., Liquor accepts the visitor and uses the visitor to call back the operation hierarchy (visit.visit(*this)), using self as an argument.

Let’s explore the code:

File:  Visitor.h

/*Visitor Interface*/

#pragma once
class Liquor;
class Tobacco;
class Necessity;

class Visitor
{
public:
    virtual double visit(Liquor liquorItem) = 0;
    virtual double visit(Tobacco tobaccoItem) = 0;
    virtual double visit(Necessity necessityItem) = 0;
};

File: TaxVisitor.h
/* Tax Visitor */

#pragma once
#include "Visitor.h"
#include "Liquor.h"
#include "Tobacco.h"
#include "Necessity.h"
#include <fmt/format.h>

class TaxVisitor : public Visitor{
    public:
        TaxVisitor(){}
    public:
        double visit (Liquor liquorItem){
            fmt::print("This is liquor tax\n");
            return ((liquorItem.getPrice() * 0.18) +
                liquorItem.getPrice());
        }
        double visit (Tobacco tobaccoItem){
            fmt::print("This is tobacco tax\n");
            return ((tobaccoItem.getPrice() * 0.28) +
                tobaccoItem.getPrice());
        }
        double visit (Necessity necessityItem){
            fmt::print("This is necessity tax\n");
            return ((necessityItem.getPrice() * 0) +
                necessityItem.getPrice());
        }
};

File: Visitable.h
/* Visitable */
#pragma once
#include "Visitor.h"

class Visitable
{
public:
    virtual double accept(Visitor& visit) = 0;
};

File: Liquor.h
/* Liquor.h */
#pragma once
#include "Visitable.h"

class Liquor :
    public Visitable
{
private:
    double price;

public:
    // CTOR...
    Liquor(double item) {
        price = item;
    }

    double getPrice() {
        return price;
    }

    double accept(Visitor& visit)
    {
        return visit.visit(*this);
    }
};

File: Tobacco.h
/* Tobacco.h */
#pragma once
#include "Visitable.h"
class Tobacco :
    public Visitable
{
private:
    double price;

public:
    // CTOR...
    Tobacco(double item) {
        price = item;
    }

    double getPrice() {
        return price;
    }

    double accept(Visitor& visit)
    {
        return visit.visit(*this);
    }
};


File: Necessity.h
/* Necessity.h */
#pragma once
#include "Visitable.h"
class Necessity :
    public Visitable
{
private:
    double price;

public:
    // CTOR...
    Necessity(double item) {
        price = item;
    }

    double getPrice() {
        return price;
    }

    double accept(Visitor& visit)
    {
        return visit.visit(*this);
    }
};

File: example.cpp
#include "TaxVisitor.h"

int main() {
    TaxVisitor taxCalc;
    Necessity milk(3.47);
    fmt::print("{}\n", milk.accept(taxCalc));

    Liquor wine(11.20);
    fmt::print("{}\n", wine.accept(taxCalc));

    Tobacco cig(19.89);
    fmt::print("{}\n", cig.accept(taxCalc));
    return 0;
}


Demo (This is same demo code on compiler explorer)
Credit: Design Patterns: Elements of Reusable Object-Oriented Software (By GoF),
        Rainer Grimm & Derek Banas


Comments

Popular posts from this blog

Reversing char array without splitting the array to tokens

 I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

Close a Window Application from another application.

 This is just a demo application code to show how the WM_CLOSE message can be sent to the target process which has a titled window to close the application. To achieve this, either we can use SendMessage or PostMessage APIs to send required Windows messages to the target application. Though both the APIs are dispatching WM_XXXXX message to target application two APIs has some differences, these are as below: 1. SendMessage () call is a blocking call but PostMessage is a non-blocking call(Asynchronous) 2. SendMessage() APIs return type is LRESULT (LONG_PTR) but PostMessage() APIs return type is BOOL(typedef int). In Short, SendMessage () APIs return type depends on what message has been sent to the Windowed target process. For the other one, it's always a non-zero value, which indicates the message has been successfully placed on the target process message queue. Now let's see how can I close a target windowed application "Solitaire & Casual Games" from my custom-