Skip to main content

The Visitor pattern

What is visitor pattern?

1.    It encapsulates an operation executed on an object hierarchy in an object. That says, it allows to add   methods to classes of different types without much altering to those classes.

2.       Enables to define new operations without changing the object hierarchy.

Use-Case:

a. Operations shall be performed on object hierarchy

b. The operations change frequently but object hierarchy is stable.

Basic UML Class Diagram: 

      







Visitor:

· Defines the visit operation on the object structure

    Tax Visitor:

· Implements the visit operation for each type of object

    Visitable:

· Defines the accept operation which takes visitor as an argument

    Visitable Element(s):

               · Implements accept operations

     



The Visitor pattern has two types of hierarchies. The object hierarchy (Visitable elements) and the operation hierarchy (TaxVisitor). The object hierarchy is pretty stable, but operation hierarchy may support different operations on same object hierarchy. In our case Visitor and Visitable acts as interfaces. What does it mean? It means Liquor, Tobacco and Necessity must implement accept member function. Similarly, TaxVisitor must implement overloads of visit function for each object type.

Operation wise, TaxVisitor is applied to object hierarchy. The job of TaxVisitor is to calculate tax based on object type visited. The crucial observation here is an object e.g., Liquor accepts the visitor and uses the visitor to call back the operation hierarchy (visit.visit(*this)), using self as an argument.

Let’s explore the code:

File:  Visitor.h

/*Visitor Interface*/

#pragma once
class Liquor;
class Tobacco;
class Necessity;

class Visitor
{
public:
    virtual double visit(Liquor liquorItem) = 0;
    virtual double visit(Tobacco tobaccoItem) = 0;
    virtual double visit(Necessity necessityItem) = 0;
};

File: TaxVisitor.h
/* Tax Visitor */

#pragma once
#include "Visitor.h"
#include "Liquor.h"
#include "Tobacco.h"
#include "Necessity.h"
#include <fmt/format.h>

class TaxVisitor : public Visitor{
    public:
        TaxVisitor(){}
    public:
        double visit (Liquor liquorItem){
            fmt::print("This is liquor tax\n");
            return ((liquorItem.getPrice() * 0.18) +
                liquorItem.getPrice());
        }
        double visit (Tobacco tobaccoItem){
            fmt::print("This is tobacco tax\n");
            return ((tobaccoItem.getPrice() * 0.28) +
                tobaccoItem.getPrice());
        }
        double visit (Necessity necessityItem){
            fmt::print("This is necessity tax\n");
            return ((necessityItem.getPrice() * 0) +
                necessityItem.getPrice());
        }
};

File: Visitable.h
/* Visitable */
#pragma once
#include "Visitor.h"

class Visitable
{
public:
    virtual double accept(Visitor& visit) = 0;
};

File: Liquor.h
/* Liquor.h */
#pragma once
#include "Visitable.h"

class Liquor :
    public Visitable
{
private:
    double price;

public:
    // CTOR...
    Liquor(double item) {
        price = item;
    }

    double getPrice() {
        return price;
    }

    double accept(Visitor& visit)
    {
        return visit.visit(*this);
    }
};

File: Tobacco.h
/* Tobacco.h */
#pragma once
#include "Visitable.h"
class Tobacco :
    public Visitable
{
private:
    double price;

public:
    // CTOR...
    Tobacco(double item) {
        price = item;
    }

    double getPrice() {
        return price;
    }

    double accept(Visitor& visit)
    {
        return visit.visit(*this);
    }
};


File: Necessity.h
/* Necessity.h */
#pragma once
#include "Visitable.h"
class Necessity :
    public Visitable
{
private:
    double price;

public:
    // CTOR...
    Necessity(double item) {
        price = item;
    }

    double getPrice() {
        return price;
    }

    double accept(Visitor& visit)
    {
        return visit.visit(*this);
    }
};

File: example.cpp
#include "TaxVisitor.h"

int main() {
    TaxVisitor taxCalc;
    Necessity milk(3.47);
    fmt::print("{}\n", milk.accept(taxCalc));

    Liquor wine(11.20);
    fmt::print("{}\n", wine.accept(taxCalc));

    Tobacco cig(19.89);
    fmt::print("{}\n", cig.accept(taxCalc));
    return 0;
}


Demo (This is same demo code on compiler explorer)
Credit: Design Patterns: Elements of Reusable Object-Oriented Software (By GoF),
        Rainer Grimm & Derek Banas


Comments

Popular posts from this blog

Variadic template class to add numbers recursively during compilation

 The idea of having a class to add numbers (variable parameters) during compilation time recursively. Also wanted to restrict types to a single type while sending parameters to class member function. That said, if we mix int, float and double types to add function shall result in compilation error. How do we achieve this. The below is the code which actually helps to achieve this: <code> #include < fmt/format.h > template < typename T> class MyVarSumClass{     private :         T _sum = 0 ;     public :         template < typename ... TRest>         T add(T num, TRest... nums){             static_assert (std::conjunction<std::is_same<TRest, T>...>{}); /* Assert fails                if types are different */             _sum += num;             return add(nums...); // Next parameter packs gets picked recursively         }         // Base case         T add(T num){             _sum += num;             return _sum;         } }; int main() {     My

A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

A concept to a product (Kimidori [ 黄緑]) - Part 2

In the previous part , we have seen KIMIDORI [ 黄緑] detect if a URL is malicious. In this part, we will see the details that KIMIDORI [ 黄緑] fetches out of the URL provided. As an example, provided a safe URL, https://www.azuresys.com/, and let's see what it brings out: As we can see, the link is safe and the link is active, which means we can just click on the link to open it on IE.  Now it's time to look into the URL report (still under development):  We have URLs IP, Location, and HTTP Status code. The Report part is a sliding window, the Show Report button shows as well as hides the report. Show / Hide Report is a toggle button. Let's see if we get the same details for any bad (phishing / malicious) URL: Took an URL example from a phishing link and tested it. The tool detected it as not a good link (Screen Shot Below) & link does not activate unlike a safe URL: Now let's see the report part for more details including domain registration details: It looks like it&