Skip to main content

The Facade pattern

Facade design pattern is a structural design pattern and it's used widely. The aim of this design pattern is to provide a simple interface to the client for a complex underlying system. So, facade means face of the building. This design pattern hides all complexities of the system and just displays a simple face. Very common example could be URL interface of a browser, which hides all complexities behind and only accepts a URL which user intends to browse. Another common example could be withdrawal / deposit of money from banking system via ATM.

To withdraw money we need following steps to achieve successfully:

1. Validate card / account number

2. Validate pin

3. In case of withdrawal check account balance and allow / disallow withdrawal

4. Follow steps 1 & 2 for account deposit (Steps 3 not needed).

5. Finally show the balance.


Code Example: 

<Code>

File: WelcomeBank.h

#pragma once
#include <fmt/format.h>

class WelcomeBank{
    public:
        // ctor...
        WelcomeBank(){
            fmt::print("{}\n", "Welcome to ABC Bank");
        }

};

File: AccountNumberCheck.h

class AccountNumberCheck {
    private:
        unsigned int _acctNumber = 12345678;
    public:
         unsigned int getAccountNumber() { return _acctNumber; }
         bool isAccountActive(unsigned int accountNumber)
         {
             if(getAccountNumber() == accountNumber) return true;
             else return false;
         }
};

File: SecurityCodeCheck.h

#pragma once
class SecurityCodeCheck{
    private:
        unsigned int _securityCode = 1234;
    public:
         unsigned int getSecurityCode() { return _securityCode; }
         bool isCodeCorrect(unsigned int securityCodeToCheck)
         {
             if(getSecurityCode() == securityCodeToCheck)
                return true;
             else
                return false;
         }
};

File: FundsCheck.h

#pragma once
#include <fmt/format.h>

class FundsCheck {
    double cashInAccount = 1000.00;
    void decreaseCashInAccount(double cashWithDrawn) {
            cashInAccount -= cashWithDrawn;
        }

        void increaseCashInAccount(double cashDeposited) {
            cashInAccount += cashDeposited;
        }
    public:
        double getCashInAccount() {
            return cashInAccount;
        }

        bool haveEnoughMoney(double cashWithDrawal) {
            if(cashWithDrawal > getCashInAccount()) {
                fmt::print("Error: Don't have enough balanace!\n");
                fmt::print("Current Balance: {}\n", getCashInAccount());
                return false;
            }
            else {
                decreaseCashInAccount(cashWithDrawal);
                fmt::print("Withdrawal complete, New Balance is: {}\n", getCashInAccount());
                return true;
            }
        }

        void makeDeposits(double cashToDeposit){
            increaseCashInAccount(cashToDeposit);
            fmt::print("Deposit complete, new balance is: {}\n", getCashInAccount());
        }
};

File: BankAccountFacade.h

/* This is our facade implementation */
#include "AccountNumberCheck.h"
#include "FundsCheck.h"
#include "SecurityCodeCheck.h"
#include "WelcomeBank.h"

class BankAccountFacade{
    private:
        unsigned int _accountNumber;
        unsigned int _securityCode;

        AccountNumberCheck accCheker;
        SecurityCodeCheck codeChecker;
        FundsCheck fundCheker;

    public:
        BankAccountFacade(int accNum, int secCode) :
            _accountNumber(accNum),
            _securityCode(secCode) {}
        unsigned int getAccountNumber() { return _accountNumber; }
        unsigned int getSecurityCode() { return _securityCode; }

        void withdrawCash(double cashToGet) {
           
            WelcomeBank bankGreet;
            if(accCheker.isAccountActive(getAccountNumber()) &&
                codeChecker.isCodeCorrect(getSecurityCode()) &&
                fundCheker.haveEnoughMoney(cashToGet)) {
                    fmt::print("Transaction complete\n");
                }
                else
                    fmt::print("Transaction failed\n");
        }

        void depositCash(double cashToDeposit) {
            WelcomeBank bankGreet;

            if(accCheker.isAccountActive(getAccountNumber()) &&
                codeChecker.isCodeCorrect(getSecurityCode())) {
                    fundCheker.makeDeposits(cashToDeposit);
                    fmt::print("Transaction complete\n");
                }
                else
                    fmt::print("Transaction failed\n");
        }
};

// This part contains our client code
File: example.cpp

#include "BankAccountFacade.h"
int main()
{
    BankAccountFacade accessingBank(12345678, 1234);
    accessingBank.withdrawCash(50.00);
    accessingBank.withdrawCash(900.00);
    accessingBank.depositCash(50.00);
    return 0;
}

</Code> 

Demo (Compiler Explorer code)

Credit: Design Patterns: Elements of Reusable Object-Oriented Software (by GoF)

Comments

Popular posts from this blog

Reversing char array without splitting the array to tokens

 I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

Close a Window Application from another application.

 This is just a demo application code to show how the WM_CLOSE message can be sent to the target process which has a titled window to close the application. To achieve this, either we can use SendMessage or PostMessage APIs to send required Windows messages to the target application. Though both the APIs are dispatching WM_XXXXX message to target application two APIs has some differences, these are as below: 1. SendMessage () call is a blocking call but PostMessage is a non-blocking call(Asynchronous) 2. SendMessage() APIs return type is LRESULT (LONG_PTR) but PostMessage() APIs return type is BOOL(typedef int). In Short, SendMessage () APIs return type depends on what message has been sent to the Windowed target process. For the other one, it's always a non-zero value, which indicates the message has been successfully placed on the target process message queue. Now let's see how can I close a target windowed application "Solitaire & Casual Games" from my custom-