Skip to main content

Programming: Windows Threading Vs Linux Threading (Part 3)

Continued from Part 2:

In Linux, normally (when we use default pthread_attribute, aka sending null to pthread_create()), we're creating the joinable thread. There is another type of thread named detached thread, which We'll see later.

A joinable thread is like a process, isn't automatically cleaned up by GNU/Linux when it terminates. Instead, its exit states hang around the system (like a zombie process) until the thread called pthread_join() obtains its return value.

Let's see what happens in the Windows world:

When the thread terminates (the normal way, aka the thread function returns), it ensures the following :

1. All C++ objects created in the thread function will be destroyed properly via their destructor.
2. The OS will clean up memory owned by the thread's stack.
3. The system will decrement threads kernel objects usage count.

The following code snippet (GNU/Linux) shows a thread created using pthread_create() with default pthread_attr_t (aka null) as the joinable thread.

void *Print_Details(void *param)
{
     /*Cast the pointer to the right type */
      int    status;
      int       state;
      struct mystruct* p = (struct mystruct*) param;
      printf("Name: %s\n", p->name);
      printf("Thread: %s\n", p->thread);
      printf("+++++++++++++++++++\n");
      pthread_attr_t        pta;
      status = pthread_attr_init(&pta);

      // Get the thread state, Joinable or Detached
      status = pthread_attr_getdetachstate(&pta, &state);
      switch (state)
      {
       case PTHREAD_CREATE_DETACHED:
             printf("The thread is Detached\n");
       break;
       case PTHREAD_CREATE_JOINABLE:
             printf("The thread is Joinable\n");
       break;
      }

      // Destroys thread attributes object and allows the system to reclaim resources
      // associated (if any) with the attribute object.
      status = pthread_attr_destroy(&pta);
      return NULL;
}

Comments

Popular posts from this blog

Reversing char array without splitting the array to tokens

 I was reading about strdup, a C++ function and suddenly an idea came to my mind if this can be leveraged to aid in reversing a character array without splitting the array into words and reconstructing it again by placing spaces and removing trailing spaces. Again, I wanted an array to be passed as a function argument and an array size to be passed implicitly with the array to the function. Assumed, a well-formed char array has been passed into the function. No malformed array checking is done inside the function. So, the function signature and definition are like below: Below is the call from the client code to reverse the array without splitting tokens and reconstructing it. Finally, copy the reversed array to the destination.  For GNU C++, we should use strdup instead _strdup . On run, we get the following output: Demo code

A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

Close a Window Application from another application.

 This is just a demo application code to show how the WM_CLOSE message can be sent to the target process which has a titled window to close the application. To achieve this, either we can use SendMessage or PostMessage APIs to send required Windows messages to the target application. Though both the APIs are dispatching WM_XXXXX message to target application two APIs has some differences, these are as below: 1. SendMessage () call is a blocking call but PostMessage is a non-blocking call(Asynchronous) 2. SendMessage() APIs return type is LRESULT (LONG_PTR) but PostMessage() APIs return type is BOOL(typedef int). In Short, SendMessage () APIs return type depends on what message has been sent to the Windowed target process. For the other one, it's always a non-zero value, which indicates the message has been successfully placed on the target process message queue. Now let's see how can I close a target windowed application "Solitaire & Casual Games" from my custom-