Skip to main content

Variadic template function - Part 1

 In C, we know we have something called printf() function. This printf() function can take any number of arguments of any built-in type (not user-defined type). As an example, the following piece of code is valid for the standard built-in printf() function.

<Code>

const char* msg = "%s can accept %i parameters (or %s).";
printf(msg, std::string("Variadic templates"), 100, "more");

</Code>

The problem in this code is, it will not print the string part, but it gets compiled with the MSVC as well as GCC 8.2 compiler.

However, if I change the code like below, now it prints everything properly.

<Code>

const char* msg = "%s can accept %i parameters (or %s).";
printf(msg, std::string("Variadic templates").c_str(), 100, "more");

</Code>

The printf is like a variadic template function but it sticks to only built-in types. Now the question comes how can I write variadic template functions in C++. In C++ 11 the support has been added.

Let's start with a simple objective, which is to create a function that takes any arbitrary number of parameters of any arbitrary type and just prints them on the screen. As an example, the function shall look like below: 

PrintAllTypes(1, 'C', "Hello World", 0.67, 1.002);

Here goes the code for PrintAllTypes:

<Code>
void PrintAllType() { std::cout << "\n"; } /* This is the base case */

template<typename T, typename... Rest>
void PrintAllType(const T& current, const Rest&... rest) {
    std::cout << current << " ";
    PrintAllType(rest...); // This is a recursive call using pack expansion syntax
}
</Code>

Below is another variant of Print that takes any number of parameters but is limited to numbers only.

<Code>
void Print() { std::cout << "\n"; } /* This is the base case */

template <typename T, 
    typename std::enable_if<std::is_arithmetic<T>::value>::type* = nullptr, typename... Rest>
void Print(const T& current, const Rest&... rest) {
    std::cout << current << " ";
    Print(rest...); // Again, this is a recursive call using pack expansion syntax
}
</Code>

Let's try the addition of numbers via the variadic template function:

<Code>
template <typename T>
auto AddGeneric(T& t)
{
    return t;
}

template<typename T, typename... Rest, 
    typename std::enable_if<std::is_arithmetic<T>::value>::type* = nullptr>
auto AddGeneric(T& current, Rest&... rest)
{
    return current + AddGeneric(rest...);
}

// The Client code:
    int x = 10, y = 20; double dbl = 5.5;
    auto res = AddGeneric(x, dbl, y);
    PrintAllType("Add Result: ", res);
</Code>

The output: 
Add Result: 35.5

What if I have a number array and I need to use that array as an argument in a variadic function. One possibility could be using a functor to unpack the array and then use it for a variadic function. 

<Code>
template <typename T>
auto AddGeneric(T& t)
{
    return t;
}

template<typename T, typename... Rest, 
    typename std::enable_if<std::is_arithmetic<T>::value>::type* = nullptr>
auto AddGeneric(T& current, Rest&... rest)
{
    return current + AddGeneric(rest...);
}

/* Array passed to a variadic function. With the help of a functor unpacking the array */
template<typename Functor, typename T, std::size_t N>
auto AdditionByArray(Functor fn, T(&t)[N])
{
    return AdditionByArrayImpl(fn, t, std::make_index_sequence<N>{});
}

template<typename F, typename T, std::size_t N, std::size_t... idx>
auto AdditionByArrayImpl(F fn, T(&t)[N], std::index_sequence<idx... >)
{
    return fn(t[idx]...);
}

struct AddSupli
{
    template <typename... Arguments>
    auto operator()(Arguments... args)
    {
        return AddGeneric(args...); // This is same recursive call
    }
};
</Code>

So far so good. Will come back to this topic later.

Comments

Popular posts from this blog

Variadic template class to add numbers recursively during compilation

 The idea of having a class to add numbers (variable parameters) during compilation time recursively. Also wanted to restrict types to a single type while sending parameters to class member function. That said, if we mix int, float and double types to add function shall result in compilation error. How do we achieve this. The below is the code which actually helps to achieve this: <code> #include < fmt/format.h > template < typename T> class MyVarSumClass{     private :         T _sum = 0 ;     public :         template < typename ... TRest>         T add(T num, TRest... nums){             static_assert (std::conjunction<std::is_same<TRest, T>...>{}); /* Assert fails                if types are different */             _sum += num;             return add(nums...); // Next parameter packs gets picked recursively         }         // Base case         T add(T num){             _sum += num;             return _sum;         } }; int main() {     My

A simple approach to generate Fibonacci series via multi-threading

T his is a very simple approach taken to generate the Fibonacci series through multithreading. Here instead of a function, used a function object. The code is very simple and self-explanatory.  #include <iostream> #include <mutex> #include <thread> class Fib { public:     Fib() : _num0(1), _num1(1) {}     unsigned long operator()(); private:     unsigned long _num0, _num1;     std::mutex mu; }; unsigned long Fib::operator()() {     mu.lock(); // critical section, exclusive access to the below code by locking the mutex     unsigned long  temp = _num0;     _num0 = _num1;     _num1 = temp + _num0;     mu.unlock();     return temp; } int main() {     Fib f;          int i = 0;     unsigned long res = 0, res2= 0, res3 = 0;     std::cout << "Fibonacci series: ";     while (i <= 15) {         std::thread t1([&] { res = f(); }); // Capturing result to respective variable via lambda         std::thread t2([&] { res2 = f(); });         std::thread t3(

A concept to a product (Kimidori [ 黄緑]) - Part 2

In the previous part , we have seen KIMIDORI [ 黄緑] detect if a URL is malicious. In this part, we will see the details that KIMIDORI [ 黄緑] fetches out of the URL provided. As an example, provided a safe URL, https://www.azuresys.com/, and let's see what it brings out: As we can see, the link is safe and the link is active, which means we can just click on the link to open it on IE.  Now it's time to look into the URL report (still under development):  We have URLs IP, Location, and HTTP Status code. The Report part is a sliding window, the Show Report button shows as well as hides the report. Show / Hide Report is a toggle button. Let's see if we get the same details for any bad (phishing / malicious) URL: Took an URL example from a phishing link and tested it. The tool detected it as not a good link (Screen Shot Below) & link does not activate unlike a safe URL: Now let's see the report part for more details including domain registration details: It looks like it&